Molecular Modelling and Simulation of Electrolyte Solutions, Biomolecules, and Wetting of Component Surfaces

نویسندگان

  • Martin Horsch
  • Stefan Becker
  • Juan Manuel Castillo
  • Stephan Deublein
  • Agnes Fröscher
  • Steffen Reiser
  • Stephan Werth
  • Jadran Vrabec
  • Hans Hasse
چکیده

Massively-parallel molecular dynamics simulation is applied to systems containing electrolytes, vapour-liquid interfaces, and biomolecules in contact with water-oil interfaces. Novel molecular models of alkali halide salts are presented and employed for the simulation of electrolytes in aqueous solution. The enzymatically catalysed hydroxylation of oleic acid is investigated by molecular dynamics simulation taking the internal degrees of freedom of the macromolecules into account. Thereby, Ewald summation methods are used to compute the long range electrostatic interactions. In systems with a phase boundary, the dispersive interaction, which is modelled by the Lennard-Jones potential here, has a more significant long range contribution than in homogeneous systems. This effect is accounted for by implementing the Janeček cutoff correction scheme. On this basis, the HPC infrastructure at the Steinbuch Centre for Computing was accessed and efficiently used, yielding new insights on the molecular systems under consideration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Heavy Metal Particles by LTJ, ANA, SVR, BEC and MER zeolites particles: A Molecular Dynamics Simulation Study

In present study, molecular dynamics simulation of Cadmium (II), Lead (II) and Copper (II) removal from aqueous electrolyte solutions using the ion-exchange process with the zeolite particles was done. The results showed that, most of the particles had the highest affinity of ion exchanging with Lead (II) and the lowest affinity with Copper (II). The calculated mean ion-exchange ratios showed t...

متن کامل

Simulation study of the performance of a biologically sensitive field effect transistor

The transformation of biochemical information into a physical or chemical signal is the basic idea behind a biosensor. The efficient detection of charged biomolecules by biosensor with appropriate device has caught tremendous research interest in the present decade. The present work is related to the simulation study of the performance of a functionalized surface of a biologically sensitive fie...

متن کامل

Simulation study of the performance of a biologically sensitive field effect transistor

The transformation of biochemical information into a physical or chemical signal is the basic idea behind a biosensor. The efficient detection of charged biomolecules by biosensor with appropriate device has caught tremendous research interest in the present decade. The present work is related to the simulation study of the performance of a functionalized surface of a biologically sensitive fie...

متن کامل

Correlation and Prediction of Acid Gases Solubility in Various Aqueous Alkanolamine Solutions Using Electrolyte Cubic Square-Well Equation of State

The object of this work is solubility correlation and prediction of CO2 and H2S in various aqueous alkanolamines using the electrolyte cubic square-well equation of state (eCSW EoS) (Haghtalab, A.,Mazloumi, S. H., (2010), Electrolyte Cubic Square-Well Equation of State for Computation of the Solubility CO2 and H2S in Aqueous MDEA Solutions,  Ind. Eng. Chem. Res.,49,6221-623). The eEoS systemati...

متن کامل

Single-step DNA immobilization on antifouling self-assembled monolayers covalently bound to silicon (111).

Hydrosilylation of alkenes with epoxide-terminated tri(ethylene oxide) moieties on Si-H surfaces yields homogeneous monolayers for the efficient coupling of biomolecules. The wetting properties of the epoxide-functionalized surface allow for the spotting of solutions of biomolecules, making the surface amenable to microarraying. Immobilization of thiolated DNA was achieved in a single step to f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013